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Yang-Mills equations and the inverse scattering transform 

Javier Villarroel t 

Received 28 January 1991 

Abstract. We consider the self-dual Yang-Mills system along with its hyperbolic version. 
We solve the corresponding initial value problem in the second case. and a boundary value 
problem for self-dual Yang-Mills equation. 

1. Introduction 

As is well known, the self-dual Yang-Mills equations in Euclidean spacetime can be 
written as [l] 

( J - ' J , ) ~ +  (J-'J,),=o (1) 

with J€SU(N) ,  z=f(x,+ix2)  and y=f(x ,+ i t )  (the bar stands for complex conju- 
gation). 

Along with the elliptic system (1) we shall also consider its hyperbolic (or 

j + f ( x , -  t ) .  Note that in this case j is not the complex conjugate of y. There is also 
no relationship with the self-dual Yang-Mills equation in this case. 

Letting A =  J- 'J ,  and B = J- 'J ,  we obtain the equivalent system 

Minkowski) version, i.el !he system !ha! is obtained by !e!!ing y-.t(x:+!) and 

Bi+A,=O By-A,+[A, B]=O. (2) 

Although important solutions of system (2) have already been found, the study of 
these equations as a boundary value problem has not yet been undertaken. In this 
paper we shall try to consider this issue. 

A natural problem for the hyperbolic case is the Cauchy problem: given the initial 
data A( f = 0 )  and E( f = 0), determine A and B for all times f > 0 on the class of 
functions vanishing at the spatial infinity. 

In the elliptic case these data by themselves do not define a well-posed problem. 
It turns out to be necessary to supplement them with a boundary condition: 
A(x , ,  x2, x,, 1 )  and B ( x , ,  x I ,  xI, f) tend to zero as f approaches infinity. This paper 
will be dedicated to the study of the above problems. We will use the inverse scattering 
method ( I S T ) .  Thisispossiblesince (2) can be represented as the compatibilitycondition 
for [2] 

(30)  

(36) 

L p  = [(k2- l ) /ka,  +i(k'+ l ) /kJ2+2a,+ U ] p ( z ,  Z, y ,  j, k)  = 0 

M p  = (-ka, + a, + B)p(z, 2, y. p, k) = 0 

where U = A - B / k , a i = a ,  and k=k,+ik, .  

7 On leave from University of Salamanca, Depanamento de Matematicas, Salamanca 37008, Spain. 
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Indeed, the requirement that LM - ML=O at once yields (2). Furthermore, from 
( 3 )  it follows that 

A =  - (pyp- ' ) (k  = 0) B=-(pzpAl)(k=O). (4) 

2. Eigenfunctions of the operator L 

In this section we shall consider the properties of the eigenfunctions of the operator 
L, in accordance with the IST method. We note that the operator L is common for 
both the elliptic and hyperbolic cases; hence, we do not need to distinguish between 
them at this stage. Differences will only appear when we consider the temporal 
evolution. 

Let the function p(x, k) solve Lp = 0 and p(x, k) +. 1 as k -f m. It satisfies the 
integral equation 

p ( x , k ) = l +  G(x-x ' ,k )Up(x ' ,k )dx '  ( 5 )  J 
where x stands for (x I ,  x2, x3) and the Green function G is given by 

where6 stands fortheusual delta function andf(x, k ) = 2 k , x , - 2 k R x , + ( k ~ + k : - 1 ) x , .  
Comments: 
(i) Equation ( 5 )  follows on noting that G solves ( L -  U)G(x, k) = S(x)  ( G  is fixed, 

demanding boundedness for all values of k) and taking Fourier transforms on both 
sides of ( 3 a ) .  

(ii) In this section we are working at f = O .  Thus, ( 5 )  involves only initiai data. 
(iii) We assume that the integral equation ( 5 )  has solutions. This certainly requires 

some decay in the potentials; however, we have not considered the precise conditions 
for this to happen. 

(iv) Equation ( 5 )  shows that the function p(k)  is in general non-holomorphic. 
Evaluating its departure from holomorphicity, which is given by ap(k)/Jk, is a central 
task in the inverse probiem (see L - C ~  tor a good review on muitidimensionai IST). 

_ _ _  " 
We not identity ap/& We find it convenient to rewrite ( 5 )  as 

p(k)  = 1 + G * U p  

with the * standing for convolution. It follows that 

ap/a&=(dG/Jk)* U p + G * U  JplJ8 (7) 
(there is a further contribution stemming from the term aU/akthat  involves S(k =O) ;  
however, this can be proved to be zero). 

In order to proceed further we need to relate p and Jp/& To this end we find it 
useful to introduce a function N(x, k, I )  that solves ( /ER) :  

N(x> k, I)=exp(ilf(x, k))+ [ G(x-x' ,k,  I ) U .  N ( x ' ,  k,I)dx'. (8) 
J 

This eigenfunction is motivated by noticing that 
m 

N ( x ,  k, I ) F ( k ,  I )  d l  (9) 
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where the scattering data F ( k ,  I)  are defined by 

3589 

, 
F ( k ,  I )  = (i/27r2)lk exp(-ilf(x, k)) U .  p(x, k )  dx. (10) 

Now, multiply (8) by exp(-ilf(x, k ) )  and use S(f(x)) exp(ilf(x))=S(f(x)) to obtain 
the crucial relationship 

W x ,  k, I )  =exp(i!f(x, k))&, k ) .  (11) 

a d J i = p L ( k ) S ( f ( X ,  k ) ,  k )  (12) 

J 

Hence we have 

with 

S(f(x, k ) )  = exp(ilf(x, k ) ) F ( k ,  I )  dl. (13) 

In the foregoing analysis we assume that ( 5 )  has no homogeneous solutions. We now 
study how the above picture is modified in the presence of homogeneous modes. Let 
Rj be a such mode at the point k = k, ( j  = 1 . . . n ) ,  i.e. R, solves as follows: 

1 

R,(x)= G ( x - x ’ , k , ) U ( ~ ’ , k , ) . R , ( x ’ ) d x ’ .  (14) J 
In accordance with the Fredholm theory we assume that these points p have poles 
with residues R,. Hence, using (a/&) ( l / ( k - k , ) ) = m ? ( k - k , )  we find that the a 
derivative picks an extra term: 

a p / J i = p ( k ) S ( f ) + I  R, S ( k -  k,). (15) 

Furthermore, a direct calculation proves that as long as R, solves (14) then R,h(f(x, k,)) 
also solves (14) for any arbitrary h and thus it is also a homogeneous mode (provided 
R,h tends to zero at the spatial infinity). Thus we come across a very unusual 
phenomenon: the eigenvalues are degenerate with an infinite multiplicity. From a 
physical point of view this arbitrariness corresponds [4] to gauge freedom. This allows 
one to set h = 1 without loss of generality. 

We close this section by giving the asymptotic form of p at spatial infinity, 

p + I +  (k:+ k: -  l)/(k(kz+ i l k ) )  exp(ilf(x, k ) ) F (  k, I)/iI dI (16) 

which follows by using partial integration in ( 5 ) .  This asymptotic expression shows 
that J - ’ = p ( k = O )  and J tend to I as r=(x:+x:+x:)+m, i.e. that A and B tend to 
zero at infinity. Note further that there is an extra decay in (16), since the integral is 
zero for any sufficiently regular F (this follows from the Riemann-Lebuesgue lemma). 
Thus, p + l + o ( l / r )  as r + m .  

J 

3. Temporal evolution of the scattering data 

We now consider the temporal evolution of the scattering data, which is determined 
from Mp = 0. Since the operator M involves a, it follows that we have to separately 
consider the hyperbolic and elliptic cases. To be specific, consider the above equation 
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along with the equation that follows upon operating on it with J/JE, i.e. M ( J ~ / J E )  = 0, 
and use our result (12) to obtain 

EF, =iI(kk+k:+l)F (17) 

with E = -1  on the hyperbolic case and E = -i in the elliptic case. Thus the evolution 
of the scattering data is given by 

F ( k , I ,  f ) = F ( k , I ,  f=O)exp[(il /&)(kk+k:+l)r].  (18) 
The boundary condition of the elliptic case requires FFlliPlic( k, I ,  0) = 0 for I < 0. 

S(E(ky-I) - kz-j) ,  k )  in terms of the original coordinates. 
On taking into account these expressions, we find that matrix S takes the form 

Comments: 
(i) Equation (12) is sometimes derived in the literature [ 5 ]  by noting that L, M 

are first-order operators, holomorphic with respect to k, and thus if p solves Lp = 0, 
Mfi = 0 then Jp/JE solves the same equations. This yields at once a relationship such 
as (12) for some S. It has also been obtained by geometrical methods [ 6 ] .  However, 
this kind of reasoning does not give any information on the specific form of S in terms 
of initial functions (our (IO) and (13)). Neither do they regarding the temporal evolution 
of initial data. Hence, as far as we know most of the work considered here is new. It 
is now possible to solve the aforementioned Cauchy and boundary problems. 

(ii) The solution of the direct and inverse problem uses a pure $ problem, in the 
sense that it does not degenerate into a Riemann problem as happens for some 
(2+ 1)-dimensional reductions of the model (see [7]). 

4. Constraints on the scattering data 

We note that (in the elliptic case) there are some natural constraints on the scattering 
data. First, unimodularity of J yields that matrices A and B are traceless. Furthermore, 
Hermiticity of J implies that as long as p solves (3) then J- 'p- ' ( - l /E) '  solves (3). 
On using (4) along with the normalization of p it follows that this function tends to 
Z as k approaches infinity and hence that (on assuming uniqueness) 

p(k)=J- 'pL- ' ( - l /L ) .  (19) 

We find upon insenion of this relationship into (12) that 

F(SI)=(-k/E)Ft(-l/IS, kE1) 

S(f(.+, k ) ,  k ) =  (-l/E2)St(f(x, -1/E), - I /E) .  

We now collect the requirements on admissible initial data. We assume that 

A(t = 0), B ( t  = 0) E L1 n L2 

F ( S  I ,  0) EL'  n L2 (21) 

F(O,f,O)=F(k,O,O)=O 

(see (12) in connection with the last identity). The aforementioned properties yield at 
once 
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All this is common for both the elliptic and hyperbolic cases. In the elliptic case F ( k ,  I )  
is zero for I C 0  and it satisfies condition (20). Hence, admissible initial data are far 
more restrictive in the elliptic case than in the hyperbolic one. 

5. Solution of the inverse problem 

It remains to give an expression for the solution of the inverse problem. This is 
accomplished by using the Cauchy formula for non-holomorphic functions, 

where the first term comes from the integral of p along the contour at infinity and 
taking into account the normalization of p at infinity and the integral in the second 
runs over the whole complex plane of the coordinate z. 

Equation (23) is to be supplemented by (15). 
The solution of the boundary problem for (1)  is now reduced to solving a set of 

linear problems. We now recall how this is done in the framework of the IST method. 
Given the Cauchy initial data A( f = O), E (  f = 0) (or J (  f = 0), aJ/af)( f = 0)) we first 
obtainp(f=O)from(5).Thenfrom(lO)and(13) wehave F ( t = O )  andS(f=O)(note  
that we are dropping the spatial dependence when unnecessary). The time evolution 
of F and S follows from (IS). Next, (23) allows one to find ~ ( f )  and finally we have 
J (  1 )  = p-'( t, k = 0). The entire process only involves solving linear problems. 

Thus we have solved the boundary problems for (1) up to the task of solving the 
linear problems given by either (3a) or (5 )  and (23) (equivalently (15)), and this is 
indeed the sense in which the IST solves a boundary problem for a nonlinear equation. 

Although solving (23) seems in general a non-trivial problem, we will now see that 
in the case of a pure triangular matrix S it can be solved with full generality [ 6 ] .  For 
the sake of simplicity assume that we are working with 2 x 2  matrices and let 

. = ( " I  1 1 3 )  s=(" o c  b). 
1 1 2  114 

Assume further that 11 has no poles. Then (15) reduces to 

ap,/aL= apl 

a@,/aL= bp,  i cp, (25b) 
and similarly for p2 and pa.  These equations are then supplemented by the normaliz- 
ation p+ I as k + m .  Their solution is a trivial task. Indeed, the first equation has the 
general solution 

with f(k) holomorphic. The normalization of 11 along with Liouville's theorem yields. 
f- 1. Substituting the above result into (256) we finally get 

dz' d i ' ) ]  p 3 ( k ) = [ g ( k ) + ( 1 / 2 r i )  
a(  2')  - c( 2 ' )  

xexp (1/2vi) a d z d i  ( 1 2 - k  
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where the function g ( k )  depends holomorphically upon k and tends to 0 as k+m.  It 
follows that g = 0. Note also that z, Z’E C. 

Similar results hold for p2 and pL4. 
The opposite case, i.e. F = S = 0 and p meromorphic (holomorphic except for some 

poles at k = k,) can also be solved explicitly. The solutions that follow are the 
well-known soliton and instanton solutions. Since this issue has been extensively 
considered in the literature we will not elaborate further (see for example [SI). In this 
case system (15) reduces to an algebraic linear system and its solution is a matter of 
linear algebra. 
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